
Available online at www.sciencedirect.com
www.elsevier.com/locate/eswa

Expert Systems with Applications 34 (2008) 2071–2081

Expert Systems
with Applications
Multiprocessor system scheduling with precedence and
resource constraints using an enhanced ant colony system

Shih-Tang Lo a, Ruey-Maw Chen b, Yueh-Min Huang a,*, Chung-Lun Wu c

a Department of Engineering Science, National Cheng-Kung University, Tainan 701, Taiwan, ROC
b Department of Computer Science and Information Engineering, National Chin-yi Institute of Technology, Taichung 411, Taiwan, ROC

c Department of Electronic Engineering, National Chin-yi Institute of Technology, Taichung 411, Taiwan, ROC
Abstract

This study presents and evaluates a modified ant colony optimization (ACO) approach for the precedence and resource-constrained
multiprocessor scheduling problems. A modified ant colony system is proposed to solve the scheduling problems. A two-dimensional
matrix is proposed in this study for assigning jobs on processors, and it has a time-dependency relation structure. The dynamic rule
is designed to modify the latest starting time of jobs and hence the heuristic function. In exploration of the search solution space, this
investigation proposes a delay solution generation rule to escape the local optimal solution. Simulation results demonstrate that the pro-
posed modified ant colony system algorithm provides an effective and efficient approach for solving multiprocessor system scheduling
problems with resource constraints.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Ant colony optimization; Scheduling; Multiprocessor
1. Introduction

1.1. Scheduling problem

Job scheduling problems are typically considered to
involve executing a set of jobs satisfying given constraints
and optimizing given criteria. Jobs are assigned timing con-
straints such as ready time, due date, and a processing time
(Cardeira & Mammeri, 1996). There are also some other
constraints, like setup time between two jobs, job prece-
dence, and resource requirements. Scheduling has many
applications in commercial, industrial and academic fields,
including avionics, communications, signal processing,
routing, industrial control, operations research, production
planning, project management, process scheduling in oper-
ating systems, class arrangement and grid computing.
0957-4174/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2007.02.022

* Corresponding author.
E-mail addresses: edwardlo@mail.ksu.edu.tw (S.-T. Lo), raymond@

mail.ncit.edu.tw (R.-M. Chen), huang@mail.ncku.edu.tw (Y.-M. Huang),
arashilen@yahoo.com.tw (C.-L. Wu).
Many different schemes have been presented for solving
scheduling problems. In practice, multiprocessor schedul-
ing problems only consider the precedence constraint
and finding the minimum of maximum complete time. In
this study, an ACO approach for the precedence and
resource-constrained multiprocessor scheduling problem
is presented and evaluated.

1.2. Multiprocessor scheduling problems using genetic

algorithm

In a multiprocessor scheduling problem, given programs
(tasks) with precedence relation within tasks are scheduled
in a given multiprocessor system, such that the program’s
execution time is minimized. Such problems are the same
as the task-scheduling problem. This problem is extremely
difficult to solve precisely, and many heuristic methods for
finding a suboptimal or optimal schedule exist. Most
scheduling problems are confirmed to be NP-complete
problems. The traveling salesman problem (TSP) is a typi-
cal NP-complete problem, for which obtaining an optimal

mailto:edwardlo@mail.ksu.edu.tw
mailto:raymond@ mail.ncit.edu.tw
mailto:raymond@ mail.ncit.edu.tw
mailto:huang@mail.ncku.edu.tw
mailto:arashilen@yahoo.com.tw

2072 S.-T. Lo et al. / Expert Systems with Applications 34 (2008) 2071–2081
solution for a tour with a minimum distance is quite time-
consuming. Liu and Leyland pioneered real-time schedul-
ing algorithms for mono-job or scheduling of independent
and periodic tasks (Liu & Layland, 1973). The genetic algo-
rithm (GA) is the most popular and widely used technique
for several kinds of multiprocessor scheduling problem
(Correa, Ferreira, & Rebreyend, 1996; Hou, Ansari, &
Ren, 1994). Crossover, mutation and selection operators
are applied to create for the new generation of schedules
and find the solution with GA. Hou et al. (1994) developed
an efficient method, the height value of each job in graph,
based on a genetic algorithm to solve the multiprocessor
scheduling problem. Correa, Ferreira, and Rebreyend
(1999) proposed a novel combined approach, in which a
genetic algorithm is enhanced with the introduction of
some knowledge about the scheduling problem represented
by the use of a list heuristic in the crossover and mutation
genetic operations. Zomaya, Ward, and Macey (1999)
studied an alternative paradigm, based on genetic algo-
rithms, to solve the parallel processor scheduling problem
efficiently without the need to apply any restrictive prob-
lem-specific assumptions. The above studies focused only
on multiprocessor scheduling without resource constraints.
Some works focus on finding the minimum processors or
the heterogeneous processors scheduling problems. Oh
and Wu (2004) presented a multi-objective genetic algo-
rithm, which aims to minimize the number of processors
required and the total tardiness of tasks. Topcuoglu,
Hariri, and Wu (2002) presented two novel scheduling
algorithms for a bounded number of heterogeneous proces-
sors, aiming to meet high performance and fast scheduling
time simultaneously.

A GA generates a high quality of output schedules in
homogeneous or heterogeneous systems, but the scheduling
times are generally much higher than with the heuristic-
based schemes. Additionally, several control parameters
in a genetic algorithm need to be determined appropriately.
Hence, GA along with simulated annealing (SA) and local
search methods, called guided random search techniques,
have been presented (Kwok, Ahmad, & Gu, 1996; Topcuo-
glu et al., 2002; Wu, Shu, & Gu, 1997).

1.3. Ant system for job scheduling problems

In ACO, a set of ant-like agents or software ants solve
the problem under consideration cooperatively. This effort
is mediated by exchanging information based on the prob-
lem structure collected concurrently by the agents, while
building solutions stochastically. Similarly, an ACO sched-
uling algorithm, consisting of concurrent distributed
agents, which discovers a feasible solution, is presented.
ACO is a class of constructive meta-heuristic algorithms
that share the common approach of building a solution
on the basis of information provided by both a standard
constructive heuristic function and previously constructed
solutions (Maniezzo & Carbonaro, 1999). Dorigo and
Gambardella (1997) first applied the ant colony system
(ACS) to solve TSP. Simulation results indicate that ACS
outperforms other nature-inspired algorithms, such as sim-
ulated annealing and evolutionary computation. Applica-
tions of the ACO algorithm are also involved in solving
job shop scheduling problems (Pierucci, Brandani, & Sog-
aro, 1996). Besten, Sttzle, and Dorigo (2000) presented an
application of the ACO meta-heuristic to the single
machine total weighted tardiness problem. Gajpal, Rajen-
dran, and Ziegler (2004) adopted ACO to solve the prob-
lem of scheduling in flowshop with sequence-dependent
setup times of jobs. Rajendran and Ziegler (2004) devel-
oped two ant colony optimization algorithms for
solving the permutation flowshop scheduling problem.
Merkle, Middendorf, and Schmeck (2002) presented an
ACO approach for the resource-constrained project sched-
uling problem (RCPSP), which is a schedule problem to
find the minimum makespan with resource and precedence
constraints. These studies indicate that ACO can work suc-
cessfully in many different scheduling applications about
combination problems.

1.4. Artificial neural networks

Hopfield and Tank first adopted artificial neural net-
works, called Hopfield neural networks (HNN), to solve
optimization problems. In the HNN (Hopfield & Tank,
1985), the state input information from a community of
neurons is received to determine the neuron output state
information. Each neuron exchanges information with
other neurons in the network. These neurons apply this
information to move the network cooperatively, thus
achieving convergence. A competitive Hopfield neural net-
work (CHNN) utilizes a competitive learning mechanism
to update the neuron states in the Hopfield neural network.
In our previous work, a multi-constraint schedule problem
for a multiprocessor system was solved by HNN (Huang &
Chen, 1999). Chen et al. also presented a modified neural
network to solve the multiprocessor scheduling problem
with inequality constraints (Chen, Lo, & Huang, 2007).

A series of studies has been conducted using HNN and
mean field annealing. These schemes are adopted for mul-
tiprocessor scheduling problems, and a modified cooling
schedule has been developed to accelerate the convergence
rate for the problem investigated (Chen & Huang, 1998). A
typical CHNN scheme has also been applied to the same
problem (Chen & Huang, 2001). Most of these works con-
centrate on the specific multiprocessor scheduling situa-
tions in which each resource type has one resource
available.

1.5. Resource-constrained multiprocessor scheduling

problems

This work attempts to find optimal or near-optimal
solutions to multiprocessor schedule problems with re-
source and precedence constraints and restricted schedul-
ing times, known as resource-constrained multiprocessor

Initialize

Loop

Each ant is positioned on a starting node

Loop

Each ant applies a state transition rule to incrementally build a

solution and a local pheromone update rule

Until all ants have built a complete solution

A global pheromone updating rule is applied

Until End_condition is reached

Fig. 1. ACS for TSP.

S.-T. Lo et al. / Expert Systems with Applications 34 (2008) 2071–2081 2073
scheduling problems, and denoted by RCMPSP in this
study. The traditional multiprocessor scheduling problems
only consider the precedence constraint, and do not
address the resource requirement problem while executing.
However, RCMPSP has some processors available in
scheduling problems, not only with the precedence relation
between jobs, but also with the resource requirement con-
straints. This work not only meets the job precedence
and resource requirement, but also minimizes the make-

span. The proposed algorithm enables fast optimal or
near-optimal solutions to be found, and is useful in indus-
trial environments where computational resources and time
are restricted.

RCPSP using ACO algorithms has recently been studied
(Brucker, Drexel, Möhring, Neumann, & Pesch, 1999; Her-
roelen, Reyck, & Demeulemeester, 1998; Merkle et al.,
2002). These scheduling problems have been demonstrated
to be NP-hard. The ACO has been successfully applied to
RCPSP, combined with the different heuristics, easily
obtaining a near-optimal solution. The RCMPSP is a gen-
eral scheduling problem. Therefore, the concept can be
adopted to solve project scheduling, job-shop, flow-shop,
open-shop problems and grid computing problems. Hence,
the RCMPSP is of interest in this investigation.

The rest of this study is organized as follows. Section 2
reviews the ant colony system in the TSP problem and the
constraints of RCMPSP. Section 3 describes the proposed
ACO algorithm, which combines the delay solution gener-
ation rule and dynamic rule for the scheduling problem.
The simulation examples and experimental results are pre-
sented in Section 4. Conclusions and discussions are given
in Section 5.

2. Ant colony system and scheduling problem

2.1. Ant colony system

The ACO algorithm has been demonstrated to be an
effective means of solving complex combinatorial optimiza-
tion problems. In ACO, the positive feedback of phero-
mone deposits on arcs comprising more optimal node-arc
tours (paths), allows the next cycle (iteration) to progress
toward an optimal solution (Stützle & Hoos, 2000). ACO
mimics the behavior of foraging ants. Ants deposit phero-
mones on the paths that they move along. The pheromone
level deposited on a particular path increases with the num-
ber of ants passing along it. Ants adopt pheromones to
communicate and cooperate with each another in order
to identify the shortest paths to a destination. ACO is
applied to the TSP first, since it enables an efficient evolu-
tion toward quality sub/optimal solutions. Dorigo et al.
proposed the ACO algorithm to solve the well-known
TSP, which evolved into the ant colony system (ACS) as
shown in Fig. 1 (Dorigo & Gambardella, 1997; Dorigo,
Maniezzo, & Colorni, 1996).

A graph G = (V,E) comprises a set of nodes (vertex)
V = {v1,v2, . . .,vn} and a set of edges E = {(i, j)jvi,vj 2 V}.
Normally, each edge (i, j) is associated with one value rep-
resenting a distance or cost. Each ant establishes a com-
plete tour in a graph (i.e., a feasible solution to the TSP)
by repeatedly applying a stochastic greedy rule (the state
transition rule) to choose nodes to visit. Ants choose the
next node to visit using a combination of heuristic and
pheromone information. Ant k at node vi selects the next
node vj to move based on Eq. (1) when q 5 q0:

½sði; jÞ�a½gði; jÞ�b ¼ max
vl2JkðiÞ

½sði; lÞ�a½gði; lÞ�b
n o

ð1Þ

where q is a random number uniformly distributed in [0, 1],
and 0 5 q0 5 1 is an predetermined parameter that deter-
mines the relative importance of exploitation versus explo-
ration. s(i, j) denotes the pheromone level on edge (i, j). And
g(i, j) represents a heuristic function defined as the recipro-
cal of cost. Jk(i) denotes the set of nodes to be visited by ant
k at node vi, and parameter a, b determines the relative
importance between the pheromone level and the edge cost.

If q > q0, vj is randomly selected from Jk(i) according to
the probability distribution given by the following
equation:

pkði; jÞ ¼
½sði;jÞ�a½gði;jÞ�bP

vl2Jk ðiÞ
½sði;lÞ�a½gði;lÞ�b

; if j 2 J kðiÞ;

0; otherwise:

8<
: ð2Þ

After an ant has completed its tour, the pheromones on
the edges of that tour are updated using the local updating
rule. The ACS uses the following local updating rule to pre-
vent succeeding ants from searching in the neighborhood
of the current best tour. The rule is defined as

sði; jÞ ¼ ð1� qÞsði; jÞ þ qDsði; jÞ; ð3Þ

where q (0 < q < 1) is a parameter representing the local
pheromone evaporation rate, and Ds(i, j) = s0 is the initial
pheromone level.

Once all the ants have completed their tours, the phero-
mones on all edges of the graph are updated using the glo-
bal updating rule. The ACS uses the global updating rule
to accelerate searching for the best solution. The global
updating rule enhances the edges discovered in the globally
best tour and is defined as

sði; jÞ ¼ ð1� dÞsði; jÞ þ dsgbði; jÞ; ð4Þ

2074 S.-T. Lo et al. / Expert Systems with Applications 34 (2008) 2071–2081
where d (0 < d < 1) is a parameter representing the global
pheromone evaporation rate, and

sgbði; jÞ ¼
L�1

gb ; if edgeði; jÞ 2 the global best tour;

0; otherwise;

(

ð5Þ

where Lgb represents the globally best tour in the current
iteration.

The ACO algorithm has recently been applied to sched-
uling problems, such as job-shop, flow-shop, and single
machine tardiness problems (Bauer et al. 1999; Dorigo &
Gambardella, 1997; Iredi, Merkle, & Middendorf, 2001;
Merkle & Middendorf, 2001). Traditionally, the phero-
mone matrix s = [sij], where the pheromone is added to
an element sij of the pheromone matrix, finds a good solu-
tion where job j is the ith job on the machine. The following
ants of the next generation directly use the value of sij and
heuristic function to estimate the desirability of placing job
j as the ith job on the machine when obtaining a new solu-
tion (Merkle et al., 2002). Bauer, Bullnheimer, Hartl, and
Strauss (1999) proposed ACO algorithms using a conven-
tional pheromone matrix [sij] to solve the single machine
total tardiness problem and the flow-shop problem. This
study adopts a modified pheromone matrix [stj], in which
the element stj, denoting the pheromone value of job j is
processed at time t on a specific machine. Restated, the
two-dimensional grid for assigning jobs on processors is a
time-dependent relation structure for scheduling jobs.
The element stj is similar to sij, which is designed to suit
a dynamic environment.

2.2. Scheduling problem

Most scheduling problems focus on minimizing either
the maximum complete time (makespan) or the tardiness.
However, maximizing performance, and minimizing make-

span and scheduling time are the major issues in multipro-
cessor scheduling problems. Examples of such problems
include scheduling jobs onto a fixed set of machines in a
manufacturing plant, scheduling aircraft takeoffs and land-
ings onto one or more landing strips, and scheduling meet-
ing rooms for multiple events of varying size and length.
Solving multiprocessor scheduling problems containing
precedence and resource constraints is similar to the above
examples, and is the major concern in this study. This work
Fig. 2. Simulation cases for six jobs with precedence
investigates a job scheduling problem involving non-pre-
emptive multitasking with processing time, precedence
and resource constraints conditions. However, meta-heu-
ristic methods such as genetic algorithms, artificial neural
networks, and simulated annealing are time-consuming.
However, the ACO has been demonstrated to have a fast
convergence rate in many applications. A modified ACO
has been built to solve defined scheduling problems. The
major difference between RCMPSP and RCPSP is that
RCMPSP has a special resource type – processors (or
machines), and one processor can only process one job
(activity) at a time. The studied multiprocessor system
comprises a number of identical (homogeneous) proces-
sors. In other words, this study focuses on homogeneous
processors only, while the number of processors can be limi-
ted or unlimited.

The formal assumptions of the scheduling problem
domain are introduced in advance. Suppose that there
are N jobs and M machines in a scheduling system. First,
a job cannot be both segmented and preemptive. Second,
a job cannot be assigned to different machines, which
implies that no job migration is allowed between machines.
Based on these assumptions, a set of job schedules is
sought. Let J = {1, . . .,N} denote the set of jobs, and
m = {1, . . .,M} represent the set of machines. Q denotes a
set of resource totals of g types, and Ri = 0 is the resource
quantity for resource type i, i 2 Q. Each job j, j 2 J, has a
duration pj and resource requirements rj, 1, . . ., rjg

, where rj, i

denotes the requirement for a resource type i when process-
ing job j. The value of rj, i does not change with time (Mer-
kle et al., 2002). There are precedence relations between the
jobs, and setup time is assumed to zero from one job switch
to the next job. The precedence relations between the jobs
can be represented by an acyclic activity-on-vertex (AOV)
network. A job schedule list is mapping a set of tasks to
a set of processors to meet the job precedence relations
and resource requirements.

Fig. 2 shows a basic example of the problem domain
studied, including a precedence graph and resources con-
straint with six jobs and four resource types on two
machines. The total utilized resources can not be more than
the total available resources for each resource type at a cer-
tain time. A two-dimensional matrix (T · N) is adopted to
denote the scheduling result. The axes of the matrix are job

and time, as denoted by j and t, respectively. The state of a
coordinate is represented by Vtj.The value of Vtj is set to
and resource constraints and one solution matrix.

S.-T. Lo et al. / Expert Systems with Applications 34 (2008) 2071–2081 2075
one (Vtj = 1) if job j is processed at time t, otherwise
Vtj = 0. Every Vtj is associated with one stj and one gtj.
Thus, unlike other approaches, the stj and gtj in the pro-
posed approach is time-dependent.
3. Modified ACO algorithm for RCMPSP

Fig. 3 displays the steps of the scheduling algorithm for
the resource-constrained multiprocessor scheduling prob-
lem by modified ACS, which combines the dynamic rule
and delay solution generation rule, and is called a dynamic
and delay ant colony system (DDACS). DDACS begins
with a partial schedule containing no jobs at time 0. At
each stage, a set of all eligible jobs Jk(t), comprising all can-
didates for successors at time t. The initial jobs in Jk(0)
have in-degree = 0 which refers to the number of eligible
jobs at time 0. The following jobs selected from Jk (t) are
applied until m = M or not satisfying resource constraints.
A job is selected by the ant from Jk(t) if it satisfies resource
and processor constraints. The processor constraint defines
the most M jobs that can be assigned to M processors.
After allocating one job to one processor so as to satisfy
the resource constraints, C and Jk(t) are then updated,
where C denotes the set of already scheduled jobs. The
algorithm runs until a stopping criterion is met, e.g., a cer-
tain number of generations have been performed or the
Fig. 3. DDACS
average quality of the solutions found by the ants of a gen-
eration is unchanged for several generations.

The state transition rules are governed by Eqs. (6) and
(7) (Park et al., 1994). The next job j is chosen from Jk(t)
when q 5 q0, which flavors the choices for the next job with
the highest pheromone times heuristic value, where the g
function is defined in Eq. (8):

j ¼ arg max
l2JkðtÞ

½sðt; lÞ�a � ½gðt; lÞ�b
n o

ð6Þ

If q > q0, then job j is randomly selected from Jk(t) accord-
ing to the probability distribution given by the following
equation:

P k t; jð Þ ¼
½sðt;jÞ�a�½g t;jð Þ�bP

l2Jk ðtÞ
½s t;lð Þ�a�½gðt;lÞ�b

; j 2 J kðtÞ;

0; otherwise;

8><
>: ð7Þ

where a, b denote the parameters correlating to the impor-
tance of the pheromone and heuristic, respectively. Con-
cerning heuristics, this study adopts the adaptations of
priority heuristics known as the critical path method to
determine the earliest/latest starting process time; Ej/Lj

for job j, j 2 J. The Ej and Lj are initially computed under
no resource considerations, hence there is a conservative
value for each job. However, the actual starting process
time of some jobs is behind the Lj when involving resource
algorithm.

Fig. 4. Simulation result of another ant after the previous ant using the
local update rule.

2076 S.-T. Lo et al. / Expert Systems with Applications 34 (2008) 2071–2081
constraints. The Lj is used in the g function to build the ini-
tial solution. The Lj from the best solution of all ants is
adopted in every iteration. Finally, the Lj is changed
dynamically in the coming iteration according to dynamic
rules given in Section 3.3. Eq. (8) shows the g function of
the modified ACO:

gðt; jÞ ¼
1

ðdjþ1Þ�
ffiffiffiffiffiffiffi
pjþ1c
p ; if Ej 6 t < Lj;

1

ð2�dj=c1Þ�
ffiffiffiffiffiffiffi
pjþ1c
p ; if t P Lj;

8<
: ; j 2 J kðtÞ ð8Þ

where dj = jLj � tj and c, c1 are large enough constant
values.

Eq. (8) demonstrates that job j with the shortest process
time (shortest pj) and nearest to Lj (minimum dj) obtains
the highest g value. Job j with the highest probability
(Pk(t, j)) is selected from Jk(t) at time t. Hence, the job with
minimum dj and shortest pj is first when Ej 5 t < Lj, or the
job with maximum dj and shortest pj is maximum first when
t = Lj.Once one job j is selected according to the state tran-
sition rule Eq. (6), then Vtj = 1, t 2 [Sj, fj], where Sj = t and
fj = t + pj � 1. Restated, Sj (fj) is the starting (finish) pro-
cess time of job j in the current solution. Thus this setting
ensures that the non-preemptive requirement is satisfied.
Restated, Vtj is set to one during the time period of Sj to
fj. An unassigned job has high g value (>1/2) when the time
t > Lj, and low g value (<1/2) when t < Lj for jobs in Jk(t).
A job with a g value of 0 is not a member of Jk(t). The g
value of a job is close to 1/2 when Lj = t. However, the g
value of a job is always between 0 and 1.

3.1. Local update rule

The pheromones stj are updated by the local updating
rule after an ant has built one RCMPSP solution. The
modified ACS adopts the following local updating rule to
prevent succeeding ants from searching in the neighbor-
hood of the current schedule of the current ant. The ants
select job j at time t, and then modify their pheromone
levels:

sðt; jÞnew ¼ ð1� qÞ � sðt; jÞ þ q � Dsðt; jÞ; t ¼ Sj; ð9Þ
where 0 < q < 1 denotes the evaporation rate as an input
parameter, where job j progresses from Sj to fj. Ds(t, j) =
s0 is set in the proposed ACO method. If the pheromone
stj is set to a low value, then job j has a lower probability
of being chosen by another ant at time t.

In Fig. 2, job 1 2 Jk(1) is the first job in the schedule at
time 1, where Jk(1) = {1,5}. Thus, s11 evaporates some
pheromone lower than s15, according to the local update
rule. At time 3, Jk(3) = {2,3,5}. If jobs 2 and 3 are selected,
the related s value (s32 and s33) is decreased. Fig. 4 shows
another feasible solution for the next ant, while job 5 is
the first job to be assigned to the processor with the highest
s value. Such a solution has the smallest makespan, i.e.
makespan = 11. The local update rule adopted to select
another job is a strategy to avoid being trapped in a local
maximum (or minimum).
3.2. Global update rule

After all ants have built all feasible schedules, the global
update rule, Eq. (10), is used to increase the pheromone stj

by applying the best solution so far. For all stj, the phero-
mone is increased by the global update rate if Vtj = 1,
where t = Sj, and is otherwise evaporated by global phero-
mone evaporation rate, as shown in Eq. (10). This is an elit-
ist strategy that leads ants to search near the best-found
solution:

sðt; jÞnew ¼ ð1� dÞ � sðt; jÞ þ d � Dsgbðt; jÞ; t ¼ Sj ð10Þ

where 0 < d < 1 denotes a parameter representing the glo-
bal pheromone evaporation rate, and

Dsgbðt; jÞ ¼
Dms; if V tj ¼ 1;

0; if V tj ¼ 0
and

�

Dms ¼ 1þmaxf0;msold � msgbg
msgb

ð11Þ

where Dsgb(t, j) is computed by the best schedule in the cur-
rent iterations, and the amount of pheromone added is
dDsgb(t, j) when job j is assigned to run in time period [Sj, fj].
The msold and msgb denote the makespan of the best sche-
dule in the previous and current iterations, respectively.
For each job, pheromone is added when a job is being pro-
cessed in the job schedule list of the best solution obtained
in the current generation. Otherwise, the pheromone is
evaporated if Vtj = 0.

3.3. Dynamic rule

The studied multiprocessor scheduling system with
resource constraints combines the RCPSP and task assign-
ment. One job’s earliest starting and latest starting time is
computed by the critical path. The makespan is first
assumed to be equal to the critical path length without con-
sidering the resource constraints. Owing to the resource
constraints, the makespan may be larger than the critical
path in the optimal solution. That is, the value of Lj

increases along with the makespan. A schedule may contain
some jobs that start to run behind Lj, which is a conserva-
tive value and is initially determined under no resource
considerations, while the g function is based on the latest
starting time, as shown in Eq. (8). If the Lj cannot reflect
the actual latest starting time, then the Lj is an excessively
conservative value for the state transition rule. Therefore, a

S.-T. Lo et al. / Expert Systems with Applications 34 (2008) 2071–2081 2077
rule is designed to refine the latest starting time by feedback
of the best solution found in each iteration. This rule is
called a ‘‘dynamic’’ rule. If the job is processed before the
Lj, then the Lj does not need to be extended later. For those
jobs that have been processed later than the Lj, the new Lj

is replaced by the Sj. Restated, this replacement is used to
acquire the most accurate value for Lj. This rule is adopted
in step 22 of the DDACS procedure in Fig. 3. The accuracy
of estimation of the g function value rises as the accuracy
of Lj increases. The Lj dynamic adjustment rule is defined
as follows:

Lj ¼
Lj; if Ej < Sj 6 Lj;

Sj; if Lj < Sj:

�
ð12Þ
Fig. 5. Simulation cases for 10 jobs with precedence and resource
constraint.
3.4. Delay solution generation rule

The delay solution generation rule (called the delay rule
for short) is indicated in step 11 of DDACS. This rule
enables some jobs to be assigned later on purpose to escape
the local optimal solution. The delayed job is excluded from
in Jk(t) for a certain delay length, which is a uniform distri-
bution of [0, Lj � t] as demonstrated in Eq. (13). The delay is
not later than Lj, hence theSj of job j cannot be greater than
Lj. One job can be processed later to let the other jobs be
processed ahead to yield global optimal solution under
the resource constraints. For instance, if one job requiring
many resources at time t is selected and added into C, then
some other jobs requiring same resources are prohibited
from being processed for some time. Accordingly, these jobs
result in a larger makespan than the optimal solution.

Fig. 6 depicts an example of this situation. Based on the
proposed method without delay strategy, two jobs in
Jk(1) = {1,2,3} are schedule to run when two processors
exist at t = 1. Suppose that jobs 1 and 2 are assigned for
processing, and Jk(2) = {3,4,5} at time 2. In this case,
job 2 needs two R3 resources and job 5 needs three R3

resources. The total amount of R3 resources available is
4, which is not sufficient for processing jobs 2 and 5 concur-
rently at t = 2. The solution is never optimal if job 2 is
scheduled at t = 1. If jobs 2 and 3 are delayed to process,
then the other jobs (jobs 4 and 5) can be executed earlier,
and the successor jobs of jobs 4 and 5 can start to run as
soon as possible. Hence, an optimal solution is obtained,
since job 7 is a critical path job and processed earlier.
The comparison between cases without delay strategy
and with delay strategy is shown in Figs. 6 and 7.

The ‘‘delay’’ rule deliberately delays an eligible job, as
shown in Eq. (13). This rule enables an undiscovered solu-
tion to be found. The delay time is defined as follows:

delay time ¼
q� ðLj � tÞ; if q > q1 and t 6 Lj

0; otherwise

�
ð13Þ

where q is a random number uniformly distributed in [0,1].
The q1 (0 < q1 < 1) is a predetermined parameter that deter-
mines the probability of changing the influence on the deci-
sions of the ants. The rules in Eqs. (6) and (7) are adopted
when q 5 q1. Otherwise, this delay strategy is applied when
q > q1 and t < Lj. The q1 value increases along with the iter-
ation. The q1 value is close to one after certain iterations.
Restated, the possibility of delaying jobs is decreased as
the iteration increase.

The DDACS combines the above described rules to
explore the search space of a feasible solution. The follow-
ing simulations indicate these rules are suitable for
resource-constrained multiprocessor problems.
4. Experimental simulations

The simulations involved different sets of scheduling
problems with different jobs, from 10 to 30 jobs on different
processors, then later with 30–120 jobs. All simulation
cases assumed that three or four different resource types
were available and 10 ants were adopted. The simulations
used various set of weighting factors. The q0 value was
set in the range of [0.8,0.95]. The initial q1 value was set
in the [0.7,0.95] range. Other settings were: iterationmax =
1000, s0 = 0.01, c = 10 and c1 = 50. Moreover, d = 0.1,
q = 0.1, a = 1, b = 1, q0 = 0.9 and q1 = 0.95 were set in
the simulation, if no other values are mentioned.

Fig. 5 shows the simplest case. This case involves 10
jobs, two or three processors with the given precedence
and resource constraints. Figs. 6 and 7 indicate the sched-
uling results for two processors. Figs. 8 and 9 display the
simulation results of three processors. Figs. 6 and 8 show
the results of the no-delay rule used in the modified
ACO. Figs. 7 and 9 display scheduling results of using
the delay rule in the algorithm.

The makespan of the optimal solution in the two proces-
sors case is ten; thus the proposed approach with the delay
rule can obtain the optimal solution in less than 10 itera-
tions. Meanwhile, the simulation results of using three pro-
cessors indicate that more processors do not improve the
makespan, due to the resource constraints and because
the jobs would be completely finished with two processors.

The following simulation cases are PSLIB cases, which
are one special problem case of the studied RCMPSP.
The PSLIB library has cases with 30–120 jobs; each case

Fig. 6. The solution matrix and Gantt chart with no delay rule for two
processors.

Fig. 7. The solution matrix and Gantt chart with delay rule for two
processors.

Fig. 8. The simulation result by Gantt chart with no delay rule for three
processors.

Fig. 9. The simulation result by Gantt chart with delay rule for three
processors.

2078 S.-T. Lo et al. / Expert Systems with Applications 34 (2008) 2071–2081
is with at least 480 instances. The PSLIB includes project
scheduling problems with no processor constraints. This
work studies RCMPSP which has resources constraints.
Restated, the PSLIB problems are special cases of
Table 1
Execution summary of one instance for 30–120 jobs

job Processor MS_avg MS_best

j30 4 44.2 43
j60 5 96.3 95
j90 6 121.8 120
j120 11 92.3 91
resource-constrained multiprocessor problems that assume
the processors are unlimited. Thus, suggested DDACS can
be directly applied to solve the PSLIB problems. The fol-
lowing simulations were used to test the proposed DDACS
to check whether the optimal solutions can be found as
listed in PSLIB. The other purpose of solving PSLIB using
DDACS is to verify the designed dynamic rule and delay
solution generation rule in obtaining a near-optimal (opti-
mal) solution. The following simulation results indicate
that the DDACS finds a near-optimal (optimal) solution
under a certain number of iterations.

Table 1 shows the simulation results (job number, pro-
cessor number, average, best, worst makespan, standard
deviation of makespan and execution time) by proposed
scheme. Each case was simulated 10 times; each simulation
was set to run for 20 iterations. These simulation cases were
set from 30 jobs to 120 jobs with intervals of 30 jobs and
with different numbers of processors. All simulations were
run on a Pentinum4 2.8 GHz PC using the C language.

Fig. 10 illustrates the simulation results of PSLIB for
cases of 30 jobs with 480 instances. Simulation results indi-
cate that the DDACS found more optimal solutions for
PSLIB problems.

Fig. 11 shows the difference between computed make-

span and optimal makespan for cases of 30 jobs with 480
instances. The total number of near-optimal solutions with
dynamic and delay solution generation rules were greater
than that obtained when no rule was employed. For
instance, DDACS obtained about 93.3% (=448/480) cases
with near-optimal solutions, in which the difference
between the computed makespan and optimal makespan

was no more than 2, as in Fig. 11c.
The q1 value indicates the probability of not adopting

the delay rule. Fig. 12 shows the numbers of optimal solu-
tions found for different no delay probabilities q1 with dif-
ferent q0 values. Simulation results reveal that more
optimal solutions found as high probability q1 was set.
Restated, a low delay probability (higher q1 value) is
suggested.
MS_worst MS_stdevp Execution time

45 0.5386 0.29
98 0.9078 1.01

123 0.6353 2.52
94 1.0450 4.83

250

300

350

400

450

500

0 1 2 3 4

Difference between computed makespan and optimal makespan

of

 s
ol

ut
io

ns

DDACS

ACS

250

300

350

400

450

500

0 1 2 3 4

Difference between computed makespan and optimal makespan

of

 s
ol

ut
io

ns

DDACS

ACS

250

300

350

400

450

500

0 1 2 3 4

Difference between computed makespan and optimal makespan

of

 s
ol

ut
io

ns

DDACS

ACS

<= <= <= <=

<= <= <= <=

<= <= <= <=

Fig. 11. The number of near-optimal solutions for 480 different instances
with different iterations: (a) 20 iterations; (b) 100 iterations and (c) 500
iterations.

26
81

120

222

287

22

84

147

226

273

0
50

100
150
200
250
300
350

q1=0.7 q1=0.8 q1=0.85 q1=0.9 q1=0.95

of

 o
pt

im
al

 s
ol

ut
io

ns

q0=0.8

q0=0.9

Fig. 12. The number of optimal solutions found for 30 jobs/480 different
instances after 20 iterations with different delay probability.

0

50

100

150

200

2 3 4 5 6 7 8 9
Processors

M
ak

es
pa

n

30 jobs

60 jobs

Fig. 13. The makespan for one 30 jobs and 60 jobs case after 100
iterations.

0

50

100

150

200

250

300

350

400

450

500

β =1 β =2 β =3 β =4 β =5

of

 o
pt

im
al

 s
ol

ut
io

ns

α =1

α =2

Fig. 14. The number of optimal solutions, found for one 30 jobs case after
500 iterations with different a, b values.

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

1 <= 5 <= 5
0

<= 1
00

<= 2
00

<= 3
00

<= 4
00

<= 5
00

<=
10

Iterations

Pe
rc

en
ta

ge
(n

o/
48

0)

DDACS
ACS
difference

Fig. 10. Probability of finding optimal solutions comparison with ACS
and DDACS.

S.-T. Lo et al. / Expert Systems with Applications 34 (2008) 2071–2081 2079
Fig. 13 depicts the makespan of the simulation results of
cases with 30 and 60 jobs with different numbers of proces-
sor simulations. These two cases show that increasing the
number of processors may not improve the schedule when
precedence constraints are adopted. Different numbers of
processors were set in the simulation. The minimum num-
ber of required processors was not considered in this study.
Most of the simulations assumed that the number of pro-
cessors in the multiprocessor system was sufficient. The
simulation results easily reveal the requisite number of pro-
cessors. The case with 60 jobs required about 5 processors,
while that with 30 jobs needed 4 processors. If only 2 or 3
processors were available, then the makespan increased
when the number of processors was not enough to process
jobs simultaneously.

To better understand how a, b values affect optimal
solutions obtained by proposed DDACS. Different a, b
values were tested in simulation. Fig. 14 shows that a lower
a value applied in DDACS is better than a high value.
Restated, a lower a value yields more optimal solutions.
Below, an a value that is equal to 1 and 2 under 500 itera-
tions is shown. The best a, b values are set case by case
based on the scheduling considerations of the real case.
The best a and b values of this study are all set to 1.

2080 S.-T. Lo et al. / Expert Systems with Applications 34 (2008) 2071–2081
5. Conclusions and discussion

This study presents a modified ACO approach named
DDACS for a multi-constraint (precedence and resource
constraints) multiprocessor scheduling problem. A two
dimension (time and job) matrix graph is adopted to repre-
sent the scheduling problem. This graph is used to resolve
the minimum makespan schedule. The proposed DDACS
algorithm modifies the latest starting time of each job in
the dynamic rule for each iteration. The latest starting time
of a job is used in the heuristic influence, as listed in Eq. (8).
The latest starting time amendment provides an appropri-
ate feedback to find the optimal solution. Moreover, a
delay solution generation rule is applied to allow the solu-
tion to escape from the local minimum. The delay solution
generation rule is a good strategy to search for a better
solution, as revealed by the simulation results, as shown
in Fig. 10.

The proposed DDACS scheme provides an efficient
method of finding the optimal schedule of the multi-con-
straint multiprocessor system. However, the simulation
results demonstrated some significant consequences for this
study when applied to the scheduling domain. These were
as follows:

1. The resource-constrained project scheduling problem is
a special RCMPSP scheduling problem. Therefore, the
proposed method can be applied to solve RCPSP
directly without modification. Processors crashing or
changing of available resources is an important consid-
eration in multiprocessor systems. However, the pro-
posed DDACS method is an adaptable scheme for
such variable resource situations.

2. This method can be adopted to predict the minimum
number of processors required in the multiprocessor sys-
tem, as the results shown in Fig. 13, which indicates that
increasing the number of processors to more than the
required number do not improve the solution.

3. An important feature of the scheduling algorithm is its
efficiency or performance, i.e., how its execution time
increases with the problem size. A fast convergence rate
is a significant characteristic of an ant colony system.
The execution time of the DDACS algorithm is propor-
tional to O(N · T · ant) for one iteration instead of
O(N · M · T · ant) if three dimensions matrix used.
Restated, the execution time of DDACS is linear pro-
portional to ant number and matrix size.

This work focuses on investigating multiprocessor sys-
tem scheduling with precedence and resource constraints.
The scheduling processors in this investigation are homo-
geneous processors. However, the more complex condi-
tions, such as set-up time between jobs on a particular
machine, and the communication cost of jobs running on
different processors and heterogeneous processors, should
be further studied. Meanwhile, a dynamic situation can
be studied, with emergency jobs arriving at a certain time
and with the changes in available resources. Moreover,
the makespan is considered in this work, but tardiness is
allowed in other scheduling problems, such as job-shop,
flow-shop and industry production plans. Heuristic func-
tions and how to generate better solutions can also be fur-
ther discussed, and future research endeavors should
address these issues more thoroughly.
References

Bauer, A., Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). An ant
colony optimization approach for the single machine total tardiness
problem. In Proceedings of the 1999 Congress on Evolutionary

Computation, 1999 (pp. 1445–1450).
Besten, M. D., Sttzle, T., & Dorigo, M. (2000). Ant colony optimization

for the total weighted tardiness problem. Lecture notes in computer

science (Vol. 1917, pp. 611–620). Berlin, Germany: Springer-Verlag.
Brucker, P., Drexel, A., Möhring, R. H., Neumann, K., & Pesch, E.

(1999). Resource-constraint project scheduling: Notation, classifica-
tion, models, and methods. European Journal of Operation Research,

112(1), 3–41.
Cardeira C., & Mammeri, Z. (1996). Neural network versus max-flow

algorithms for multi-processor real-time scheduling. Real-time sys-
tems. In Proceedings of the Eighth Euromicro Workshop (pp. 175–180).

Chen, R. M., & Huang, Y. M. (1998). Multiconstraint task scheduling in
multiprocessor system by neural network. In Proceedings of the IEEE

10th international conference on tools with artificial intelligence, Taipei

(pp. 288–294).
Chen, R. M., Lo, S. T., & Huang, Y. M. (2007). Combining competitive

scheme with slack neurons to solve real-time job scheduling problem.
Expert Systems with Applications, 33(1), 75–85.

Chen, R. M., & Huang, Y. M. (2001). Competitive neural network to
solve scheduling problem. Neurocomputing, 37(1–4), 177–196.

Correa, R. C., Ferreira, A., & Rebreyend, P. (1996). Integrating list
heuristics into genetic algorithms for multiprocessor scheduling. In
Parallel and distributed processing, eighth IEEE symposium (pp. 462–
469).

Correa, R. C., Ferreira, A., & Rebreyend, P. (1999). Scheduling
multiprocessor tasks with genetic algorithms. IEEE Transactions on

Parallel and Distributed Systems, 10(8), 825–837.
Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A

cooperative learning approach to the traveling salesman problem.
IEEE Transactions on Evolutionary Computation, 1(1), 53–66.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system:
Optimization by a colony of cooperating agents. IEEE Transaction on

System, Man and Cybernetics, 26(1), 1–13.
Gajpal, Y., Rajendran, C., & Ziegler, H. (2004). An ant colony algorithm

for scheduling in flowshops with sequence-dependent setup times of
jobs. European Journal of Operational Research, 155(2), 426–438.

Herroelen, W. B., Reyck, D., & Demeulemeester, E. (1998). Resource-
constrained project scheduling: A survey of recent developments.
Computers & Operations Research, 13(4), 279–302.

Hopfield, J. J., & Tank, D. W. (1985). Neural computation of decision in
optimization problems. Biological Cybernetics, 52, 141–152.

Hou, E. S. H., Ansari, N., & Ren, Hong. (1994). A genetic algorithm for
multiprocessor scheduling. Systems. IEEE Transactions on Parallel and

Distributed, 5(2), 113–120.
Huang, Y. M., & Chen, R. M. (1999). Scheduling multiprocessor job

with resource and timing constraints using neural network. IEEE

Transactions on System, Man and Cybernetics, Part B, 29(4), 490–
502.

Iredi, S., Merkle, D., & Middendorf, M. (2001). Bi-Criterion Optimization
with Multi Colony Ant Algorithms. In Proceedings of the first

international conference on evolutionary multi-criterion optimization

(EMO’01). Lecture notes in computer science (Vol. 1993, pp. 359–372).
Springer-Verlag.

S.-T. Lo et al. / Expert Systems with Applications 34 (2008) 2071–2081 2081
Kwok, Y. K., Ahmad, I., & Gu, J. (1996). FAST: A low-complexity
algorithm for efficient scheduling of DAGs on parallel processors. In
Proc. int’l conf. parallel processing (ICPP) (vol. II, pp. 150–157).

Liu, C., & Layland, J. (1973). Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the ACM, 20(l),
46–61.

Maniezzo, V., & Carbonaro, A. (1999). Ant colony optimization: An
overview. In Proceedings of MIC’99, III metaheuristics international

conference, Brazil.
Merkle, D., & Middendorf, M. (2001). A new approach to solve

permutation scheduling problems with ant colony optimization. In
Proceedings of the EvoWorkshops 2001, Lecture notes in computer

science (vol. 2037, pp. 484–494).
Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony

optimization for resource-constrained project scheduling. IEEE Trans-

actions on Evolutionary Computation, 6(4), 333–346.
Oh, J., & Wu, C. (2004). Genetic-algorithm-based real-time task sched-

uling with multiple goals. Journal of Systems and Software, 71(3),
245–258.

Park, J. G., Park, J. M., Kim, D. S., Lee, C. H., Suh, S. W., & Han, M. S.
(1994). Dynamic neural network with heuristic. IEEE International

Conference on Neural Networks, 7, 4650–4654.
Pierucci, P., Brandani, E. R., & Sogaro, A. (1996). An industrial
application of an on-line data reconciliation and optimization prob-
lem. Computers & Chemical Engineering, 20, S1539–S1544.

Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permu-
tation flowshop scheduling to minimize makespan/total flowtime of
jobs. European Journal of Operational Research, 155(2), 426–438.

Stützle, T., & Hoos, H. H. (2000). MAX–MIN ant system. Future

Generation Computer Systems, 16(9), 889–914.
Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and

low-complexity task scheduling for heterogeneous computing. IEEE

Transactions on Parallel and Distributed Systems Publication, 13(3),
260–274.

Wu, M. Y., Shu, W., & Gu, J. (1997). Local search for DAG scheduling
and task assignment. In 1997 international conference on parallel

processing (ICPP ’97) (pp. 174–180).
Zomaya, A. Y., Ward, C., & Macey, B. (1999). Genetic scheduling for

parallel processor systems: Comparative studies and performance
issues. IEEE Transactions on Parallel and Distributed Systems, 10(8),
795–812.

	Multiprocessor system scheduling with precedence and resource constraints using an enhanced ant colony system
	Introduction
	Scheduling problem
	Multiprocessor scheduling problems using genetic algorithm
	Ant system for job scheduling problems
	Artificial neural networks
	Resource-constrained multiprocessor scheduling problems

	Ant colony system and scheduling problem
	Ant colony system
	Scheduling problem

	Modified ACO algorithm for RCMPSP
	Local update rule
	Global update rule
	Dynamic rule
	Delay solution generation rule

	Experimental simulations
	Conclusions and discussion
	References

